If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+38x+60=0
a = 4; b = 38; c = +60;
Δ = b2-4ac
Δ = 382-4·4·60
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-22}{2*4}=\frac{-60}{8} =-7+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+22}{2*4}=\frac{-16}{8} =-2 $
| 3a-(6-a)-36=0 | | -4x-7-5x=-16 | | 2x=6x-19=4x-1 | | 2a-2a+6a=6 | | s+9/2=3 | | 5(x+4)=6x-13 | | c–73= 3 | | X+6=14;x=8 | | 1s+3=16 | | -3+3x+3x=-39 | | -7=s(-13) | | 45=2x=3x | | 36q+3q-38q+10q+q=36 | | 112=4(8v+4) | | -(6-4x)=26 | | 36-27x+2x^2=0 | | 280/x=70 | | 10q=36 | | -4(3x+3)=108 | | -4p–10=-2p+10 | | 20-1/5d=1/3d+16 | | -q+13q+5q-19q=18 | | 1+2/3x=25/18 | | 10+p=-4p | | 14a-8a+a+2a-2a=14 | | 2x4+6x3=0 | | -x+2/9=-5/18 | | 5+9y=10y | | 10(x+110)=-2(4-x) | | 3(7-z)-36=27z-5(3+6z) | | -6c-7c-17c-13c+14c-13=16 | | -6t-9=-5t |